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STABILITY AND STABILIZATION OF AUTONOMOUS 
SYSTEM ORBITS UNDER STOCHASTIC ~ERTURBATIONS~ 
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Ekaterinburg 

(Received 27 Juneau 1992) 

Both the necessary and sufficient conditions for exponential orbital stability in the mean square for periodic 

motions of stochastic systems are obtained, using the method of orbital Lyapunov functions. From the 

sufficiency criteria an orbit stabilization method is given. 

1. CONSIDER the system of differential equations 

dx = f(x)dr (1.1) 

where x is an ~-Dimensions vector andf(_x) is a vector function of appropriate dimensions. Suppose 
x = E(t) is a T-periodic solution of system (1.1) that differs from the point of rest, and y is the phase 
trajectory of this solution (orbit). Necessary and sufficient conditions for exponential orbital 
stability, connected with the Andronov-Witt theorem and its analogues [l-4], belong to the first 
Lyapunov method. In [5] a method was developed that reduced the investigation of the stability of 
the orbit to an investigation of the stability of the point of rest. The main method of analysing the 
stability of systems with random perturbations 
deterministic systems (1.1) a method of orbital 
extended here to stochastic systems of the form 

dx = f(x)dt + 

(see 16, 71) is the second Lyapunov method. For 
Lyapunov functions has been proposed [S] and is 

(1.2) 

In (1.2) a,(x) (r = 1, . . . , m) is a vector function of approp~ate dimensions and w,(t), (r = 
1 . -7 m) is an independent standard Wiener process. It is assumed that the random noise in (1.2) is 
such that x = t(t) remains a T-periodic solution, i.e. 

a&(t)) = 0, 0 g t < T. 

Suppose U is a neighbourhood of the orbit y such that for any point x E U one can uniquely find a 
quantity 4+(x), 0 Q qx > G T for which [($3(x)) is the point on the trajectory y that is nearest to x. It is 
clear that the vector 

+>=x - H@(x)) 

is a displacement from the orbit normal to the vectorf[e(ti(x))f[,$($?(x))]. We assume that there is a 
neighbourhood U such that this property holds and which is invariant under both system (1.1) and 
system (1.2). For system (1.1) such a neighbourhood exists if the orbit y is exponentially orbitally 
stable. If U is invariant for system (1.1) and the diffusion coefficients V,(X) (r = 1, . . . , m) vanish 
outside some compact set completely contained in U, then U is also invariant under the stochastic 
system (1.2). 

~e~~~~~o~. A periodic solution S(t) of system (1.2) is called ex~nentially orbitally stable in the 
mean square (EOMS-stable) in an invariant neighbourhood U if there exist (Y > 0, K> 0 such that 
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E I A(x(f))l’ < Ke-“’ / A@,) 1’ % i j i 

for any xoE U. In (1.3) x(t) is a solution of (1.2) satisfying the initial condition x (0) = x:,, 
This paper gives both the necessary and sufficient conditions for EOMS-stability, based on the 

method of orbital Lyapunov functions. The use of a sufficiency criterion enables one to solve thti 
problem of stabilizing periodic motions t(r) of system (l-2). 

2. An important role in the investigation of the stability of stochastic systems (see 171 j is played hi 
the generating differential operator 

We introduce the notation 

Here V(f), F(T) and S( ) r are T-periodic (n x n) matrices. 
The following lemma is an extension to the stochastic case of the corresponding lemma in [S] 

rebuff. Suppose that in a neighbourhood U of the orbit y there is a sufficientiy smooth function 
V(X) satisfying the conditions u(x) 30, v([(T)) = 0, OS r< T. Then 

V(r) f (i (7)) = 0 (2.1) 

andforxEU 

R(x) P Wx)= 6 - t(mTw~) (x - 87)) + b(x, Hm (2.41 

(W(r) = V’(7) + P(T) V(T) + V(Z)F(T) + j 1 ST(r) V(T)&(7)) 

andthefunctions&(x,y)aresuch that jSj(x,y)/Lpiix--)!i3,pi>O(i= 1, 3). 
We denote by P(S) the matrix corresponding to the projection operator onto the subspacc 

orthogonal to the vector f#O; P(f) = I- if]-‘ff’ where I is the unit matrix. We put 
F, = P(f(&(r))). We shall call the quadratic form x7Ax, and aiso the symmetric matrix A, 

P(f)-positive defmite, and write 

(P(f)-non-negative definite and write 
P(f) 

A 2 0) 

if for any vector x #O orthogonal to the vector f, the inequality x”‘Ax > 0 (x”Ax 30) is satisfied. 

Theorem I. Suppose that for some T-periodic P,-positive definite matrix C’(7) there exists a 
T-periodic positive definite matrix V(T) such that 
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(2.5) 

Suppose the diffusion coefficients U,(X) of system (1.2) vanish outside the r-tube U, = {x: 
AT(X) V(6(x)) A(x) < r} f or sufficiently small r. Then a T-periodic solution t(t) of system (1.2) is 
EOMS-stable in the set UT, for some rl > r. 

If a T-periodic solution t(t) of system (1.2) is EOMS-stable in some invariant neighbourhood U 
and the integral E_fg 1 A (x (s)) 1 2d,s is a sufficiently smooth function in U, then for any T-periodic 
P,-positive definite matrix C(T) there exists a T-periodic P,-positive definite matrix V(T) satisfying 
Eq. (2.5). 

Proof of ~~~c~e~cy. Suppose V(T) is a matrix satisfying the conditions of the theorem. There 
exists some ro>O for which the function 6(x) is defined in the domain UrO. Then the function 

v(x) + AT(x) V(a(x))A( x ) is also defined in Ur,. From the lemma [putting T = G(x) in (2.4)] and 
(2.5) there follows the relation 

Lu(x) = -&x)CP(x))A(x) + S2@, NW))) (2.6) 

In view of the P+,,-p ositive definiteness of the matrices V(i)(x)) and C(i+(x)) one can find 
positive numbers m, A4 and a! such that 

m 1 A(x) I2 d u(x) G M t A(x) I2 

ff I A@-) I* Q A~(x)~(~(~))A(~~ 
(2.7) 

From (2.7) it follows that 

-A%)C(+))A(x) < -aM-‘u(x) G53) 

The following inequalities are obtained from the lemma and (2.7) 

I 62 (x, QW))) I 4 i-32 I A(x) 1’ G P2m -* I A(x) I u(x) (2.9) 

From (2.6), (2.8) and (2.9) we obtain the inequality 

l;u(~) G (&m-i I A(x) I -CUM-* )u(x) 

which is valid for U,, . 
One can always find an rl G r. such that in U,, C UFO we have the inequality 

B2m -’ I A(x) f -aM-’ < -H culf-’ 

from which it follows in turn that 

LU(X) < - ?4oJ!f%(x) (2.10) 

We will now assume that the diffusion coefficients of system (1.2) vanish outside U, for some 
r < rl . In this case the domain Ur,, being invariant for the deterministic system (1.1) (which follows 
from the fact that V is a Lyapunov function for the deterministic system), also remains invariant for 
the stochastic system (1.2). From Ito’s formula we obtain 

From (2.10) and (2.11) it follows that for any X~E UT, the inequality 

is satisfied. 

f?u(x(t)) < exp (-M orMe t)Eu(~,) 

Finally, using (2.7), we obtain 

E I A(x(t)) I2 < Mm -’ exp (-% &i-r t)E ) A(+) 1’ 

The EOMS-stability is proved. 

(2.11) 
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Necessiry. In view of the EOMS-stability of system (1.2) in U the function 

u(x) = E 7 AT(x(s))C(S(x(s)))A(x(s))ds 
0 

is defined where x(t) is the solution of system (1.2) with initial condition x(O) = X. From the 
P,-positive definiteness of the matrix C(r) it follows that the function u(x) satisfies the conditions of 
the Iemma, while the matrix a/(~) = ‘/r[e”vfT(7))/a~~~~~]~,~=~ is P,-positive definite. Because 

Eufxft)> - u(x) = -E ; Ar(x(s))C(tlt(x(s,))A(~(~)~~~ 
0 

we have 

+QJ!?u(x (t)) = -Ar(x)C(O(x))A(x, 

On the other hand, from Ito’s formula and (2.4) it follows that 

where 

It foXlows from (2.12) and (2.13) that PTIVWf7}P, = - fTC’(r)P,. Because P_W(7)f’ = M/‘(T).. 
equality (2.5) holds. The necessity is proved. 

Theorem 2. Suppose that the matrix c‘(7). instead of satisfying the assumption of P,-poritivc 
detiniteness as in Theorem 1, satisfies the conditions 

C(r) - a(t)1 3 0 (2.14) 

where a(~) is some T-periodic function. Then ELMS-stability holds 

Ppoof In Theorem 1 the case Q(T) 3 ar > 0 was considered. We now reduce the more general cxsc 
(2.15) to the one previously considered. For this it is sufficient to construct from the matrix V(T) trf 
Theorem 2 a matrix Z(7) satisfying the equality 

Z’(z) + Fqr)z(r) + Z(T)F(P) f j , s,T(?)z(?)s,(T) = -P,D(W, (2. Ifi) 

with a matrix D (7) such that for some p > 0 the matrix D (7) - ~1 is ~~-non-negative definite. We 
shati construct the matrix Z(r) in the form Z(T) = P(T) V(+ where p(r) > U is a d~~erent~a~le 
T-periodic function. In view of Eq. (‘2.5’) and the eyuatity V(T) = P,V(T)P, relation (2. Ii,) will be 
satisfied if one puts 

D(7) = -p’(r)V(r) + P(T)Clrf 

From (2.14) there follows the inequality 
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Suppose ~(7) satisfies the differential equation 

p’(r) - cam-rp = -kp 

where k is some constant. The solution of this equation is the positive function 

859 

(2.18) 

p(t) = exp Jr (cam-’ - k)ds 
0 

From the T-periodicity requirement we obtain for k the equation 

1 = exp ,’ (a(s)M-’ - k) ds 
0 

from which we find 

From (2.17) and (2.18) we obtain the inequality 

p, p, 
D(r) > mkp(r)Z > mk ,Ti;, p(r)Z 

i.e. for Z.L>O one can take p = mkminlo,Tl~(~). Theorem 2 is proved. 
Previously [9] the problem of the stability of the rest point of a complex stochastic system with 

several sources of noise was reduced to finding the value of some criterion computed for a simpler 
system with a smaller number of noise sources (and in particular, for a deterministic system). The 
possibilities of such an approach for investigations of EOMS-stability are demonstrated in the 
following theorem. 

Theorem 3. Suppose that a T-periodic solution [(Q-) of the deterministic system (1.1) is 
exponentially orbitally stable, and the diffusion coefficients of system (1.2) vanish outside a 
sufficiently small neighbourhood of U, , while inside U, they satisfy the inequality 

: I U,(X) I2 G ~l(s(x))A~(x)r(s(x))A(x) (2.19) 
r= 1 

where ~(7) 2 0 is a T-periodic function, and F(T) is a T-periodic P,-positive definite matrix. Suppose 
V(T), a T-periodic P,-positive definite matrix, is a solution of the deterministic Lyapunov equation 

V’(7) + FT(r)V(r) + V(r)F(r) = -P* lp)P, (2.20) 

Then the inequality 

$ i p(s) tr V(s)ds < 1 (2.21) 

is a sufficient condition for EOMS-stability of the solution ((T) of system (1.2) in Url for some r, > r. 

Proof. Suppose U(X) = A’(x) V(s(x))A(x), w h ere V(T) is a T-periodic P,-positive definite matrix 
of the solution of the deterministic Lyapunov equation (2.20). (We note that in view of the 
EO-stability, such a matrix always exists.) With condition (2.19) for the function R(x) = Lu(x) 
there exists the majorant 

Wx) 
R(x) = (7 > 

i a2u(x) 
f(x) > + ~L(~(x)>AT(x)r(~(x))a(x) tr [ 5 7 1 

Furthermore, using, as in the lemma, the expansions for [du(x)l&x, f(x)] and %d24~)/~x2, we 
obtain 

E(x) = A’(x) &~@))A(x) + 6(x, EC@))) 
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From the inequality R (x) G I;’ (x) there follows the inequality 

W(7) pz V(T), 

from which C(T) = -W(T) and C(T) = - ~~~~ we obtain 

C(z) ps C(r). 

Because C(T) = [1-~(7)trV(7)]P,lY(~)P,, we have 

p, 

By the P,-positive definiteness of the matrix F(T) one can find a positive number v such that 

p7 
P,ry?)P, 2 vi. 

Thus, C(T) satisfies the inequality (2.14) . m which a(~) = ~[l - B(+r)tr V(T)]. Here condition (2.15) 
follows directly from (2.21). Hence by Theorem 2 the solution t(7) of system (1.2) is EOMS-stable 
in a neighbourhood U,, for some r1 >r. The theorem is proved. 

3. Consider the problem of stabilizing the periodic motion of a system with control 

kc = (f(x) + B(w+) df + ,E 1 or(x) d%.(t) 

where B(7) is a T-periodic (n x k) matrix and u is the k-dimensional control 

~~eure~ 4. Suppose that the control is (3.1) is constructed in the form 

tl f -~(~(x~~A(x~ 

with a weighting matrix 

K(r) = R -’ (r)B*(r) V(r) 

(3.1) 

(3.2) 

where R(T) is a T-periodic positive definite matrix of dimensions k x k and V(T) is a solution of the 
matrix Riccati equation 

V’(7) + PT(7) V(7) + V(?)F(?) - V(r)B(r)R -r (r)BT(r)V(7) + 

+ 5 $(?)V(T)&(7) = -P,C(?)P, 
r= 1 

(3.3) 

Suppose V(T) and C(T) satisfy the conditions of Theorem 1. Then, if the diffusion coefficients in 
(3.1) vanish outside U, for sufficiently small Y, the orbit y of system (3.1) with control (3.2) is 
EOMS-stable. 

The proof follows directly from Theorem 1. 
It has been shown that in the deterministic case similar stabilizing controls were close to optimal 

in the problem of minimizing some functional. It seems that here too the regulator (3.2), (3.3) is 
close to optimal for the functional 

J = E jp [Ar(x)C(t9(x))A(x)+ u’R(S(x))u]dt 
0 



4, In the following examples we take 

where G(T), OGT< Tis a T-periodic God-uegativ~ definite matrix. One can show that for this function 

In particular, for G = 1’ 

We give the formula far 

we have 

one earl show that 

W(T)P, = W(7) (4.2) 

In view of (4.2), one obtains for C in relation (2.5) the matrix C = - W. 

example 1. We consider the Van der PoI equation with multiple noise sources, written in the form of the 
system 

x; =‘x$, x; =-XI i’exx,(l -x;)+a(X,,X1)W (4.3) 

As we know, the as~ptotically stable orbit x = ~(7) for the deterministic Van tier PoI equation for small 
e>O differs littie from a circle of radius 2, and this is used in later calculations. Suppose 

a&, 1 *%I = set - fr CWIm (4.4) 

where p~t.>D is some constant, so that the orbit investigated is a solution of system (4.3). The intensity of the 
noise is governed by p. We find a quantity ~0 such that far p<h the orbit is EOMS-stable (and here, in 
accordance with the results obtained, it is assumed that the noise is of the form (4.4) sufficiently near to the 
orbit, and vanishes outside some tube surrounding the orbit). 

Taking as C(T) the matrix - M”(T) in accordance with (4. I), we estimate (Cr. x) for a vector n o~hogo~~I to 
f(r) with norm 1x1 = 1. We obtain 

(CX, x) -- 2# (?E: -1)-%pll:+&:+O(Ea)+0(6pt) 

If LY(T) is put equal to the value of (Cx, X) obtained, the matrix C(r)- ~($1 wiI1 be ~~-non-u~gative definite 
(more precisely, P,-null), Using the fact that & = 
find 

2cosr+Offr), &= -Zsinr+O(e) and T=Z%rfQ(e), we 

[6T>dF f 4976 - n&r* + tife*j + Of& 

Wence, if $CILZ<e, then for sufficiently small (r the orbit of system (4.3) will be EOMS-stable. Therefore 
Jio = 26. 

~x~rn~~~ 2. We again consider system (4.3), but now with a function rr of the form 

u(x*,x~)=~l~(~~,~i”a)l = rlfx, - El (fiN2 + 6% - 12 w 121% 

near the orbit. 

(4.5) 
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The derivatives 

do not exist for this function. 
However, the results of the preceding sections can, without any special difficulties, be carried over to system 

(1.2), in which the coefficients of the noise have the form cr, (x) = (P~u,-(P,), whcrc IF,, I\ ;i \ccto~. 

Pr = [(x - 5(w)))T~, (@x))b - 5(-9(x)))l”’ .. I\ a scalar, I’, is a non-negative definite matrts. and tr,(p) 19 ,i 

smooth scalar function for p 20, not equal to zero except that at zero LY, (0) = 0. In this case all the result5 crf 

Sec. 2 remain as before with Eq. (2.5) replaced by the equation 

W ,a T’. + FTV + VF* : (ol;(O))‘(~pr~Vlp,)P,rrP, = -P&P, 
r= 1 

In investigating the stability and stabilization of the points of rest similar noise sources (noise of the second 

type) were considered [9]. 
For system (4.3), (4.5) m = 1 1 I’ = 1, the vector cp = (0. p)‘. U’(O) = 1. Taking as U(X) the same function ‘1s 111 

example 1, we again estimate (CX.X). using the equality C = -U’(relation (4.2) being satisfied here as wzll). 
where W is found from (4.6). We obtain 

Here for an appropriate N(T) 

T 
J (Y(7)d7 = 4ns - 4nu* + O(e2) + O(e/.?) 
0 

and so 
MQ = I- ‘,.r F. 

1. 

2. 

3. 
4. 
5 _ 

6. 

7. 

8. 

9. 
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