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STABILITY AND STABILIZATION OF AUTONOMOUS
SYSTEM ORBITS UNDER STOCHASTIC PERTURBATIONSYt

G. N. MiL’sHTEIN and L. B. RyAsHKO
Ekaterinburg

(Received 27 January 1992)

Both the necessary and sufficient conditions for exponential orbital stability in the mean square for periodic
motions of stochastic systems are obtained, using the method of orbital Lyapunov functions. From the
sufficiency criteria an orbit stabilization method is given.

1. ConsiDeR the system of differential equations
dx = f(x)dt (1.1)

where x is an n-dimensional vector and f(x) is a vector function of appropriate dimensions. Suppose
x = §(t) is a T-periodic solution of system (1.1) that differs from the point of rest, and vy is the phase
trajectory of this solution (orbit). Necessary and sufficient conditions for exponential orbital
stability, connected with the Andronov—-Witt theorem and its analogues [1-4], belong to the first
Lyapunov method. In [5] a method was developed that reduced the investigation of the stability of
the orbit to an investigation of the stability of the point of rest. The main method of analysing the
stability of systems with random perturbations (see [6, 7}) is the second Lyapunov method. For
deterministic systems (1.1) a method of orbital Lyapunov functions has been proposed [8] and is
extended here to stochastic systems of the form

w=mwu-§gmmwn (1.2)

In (1.2) oo(x) (r=1, ..., m) is a vector function of appropriate dimensions and w,(t), (r =
1, ..., m)is an independent standard Wiener process. It is assumed that the random noise in (1.2) is
such that x = &(¢) remains a T-periodic solution, i.e.

aoEE) =0, 0<t<T

Suppose U is a neighbourhood of the orbit +y such that for any point x € U one can uniquely find a
quantity 9(x ), 0< 9(x) < T for which £&9(x)) is the point on the trajectory vy that is nearest to x. It is
clear that the vector

Alx)=x - £(3(x))

is a displacement from the orbit normal to the vector f[£(3(x)) f[£€(¥(x))]. We assume that there is a
neighbourhood U such that this property holds and which is invariant under both system (1.1) and
system (1.2). For system (1.1) such a neighbourhood exists if the orbit vy is exponentially orbitally
stable. If U is invariant for system (1.1) and the diffusion coefficients o,(x) (r =1, . . ., m) vanish
outside some compact set completely contained in U, then U is also invariant under the stochastic
system (1.2).

Definition. A periodic solution &(t) of system (1.2) is called exponentially orbitally stable in the
mean square (EOMS-stable) in an invariant neighbourhood U if there exist >0, K>0 such that
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EAX(O)P < Ke™® [ Alxy) |?

for any xo &€ U. In (1.3) x(¢) is a solution of (1.2) satisfying the initial condition x (0) = x,,.

This paper gives both the necessary and sufficient conditions for EOMS-stability, based on the
method of orbital Lyapunov functions. The use of a sufficiency criterion enables one to solve the
problem of stabilizing periodic motions &) of system (1.2).

2. An important role in the investigation of the stability of stochastic systems (see [7]) is plaved by
the generating differential operator

o o) 1 m o 3tux) L o
Lo = :;21 ax; fit) + 2 r?: 14 ?~ 1 0x; 8x; Uri(X}Urf(x) - bt
] 2
(7&3 ren = £ (o, ( L 0,6)
X 2 r
A v A ) 82u n
(—=[—.. ..., 1. T = ] )
ax 9x, ax, ax Ox;0x; ;o
We introduce the notation
1 a2 n
V(T) [ — [_M ]
2 ax!'ax}' ii=1
ofi(,(my) ” aori(§(r)) "
Fo) = D) gy - (D)
aX/ L= 1 axi i7=1

Here V(7), F(r) and S (7) are T-periodic (1 X n) matrices.
The following lemma is an extension to the stochastic case of the corresponding lemma in |8].

Lemma. Suppose that in a neighbourhood U of the orbit vy there is a sufficiently smooth function
v(x) satisfying the conditions v(x)=0, v{&(r)) =0, 0<7<T. Then

V(D fEE)=0 (2.2)

and forxe U
v(x)=(x - E@O V(1) (x - E(7) + 8, (x, £(r)) (2.3)
R(x) & Lu(x)=(x - £(0)T W) (x ~ £()) + 82(x, £(7)) (2.4)

W@ =V O+ FI@Vm+VEFT) + L ST@VE)S(1)
r=1

and the functions &;(x, y) are such that {8;(x, y)|<B;x—y|’, B;>0(i=1,2).

We denote by P(f) the matrix corresponding to the projection operator onto the subspace
orthogonal to the vector f#0; P(f)=1—|f|"*ff" where [ is the unit matrix. We put
P, = P(f(&m)). We shall call the quadratic form x’Ax, and also the symmetric matrix A,
P{f)-positive definite, and write

PLrY .
A >0

(P(f)-non-negative definite and write
P(f)
4 =2 0

if for any vector x #0 orthogonal to the vector f, the inequality x"Ax >0 (x"Ax=0) is satisfied.

Theorem 1. Suppose that for some 7T-periodic P -positive definite matrix C(7) there exists a
T-periodic positive definite matrix V (7) such that
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m

V+FI@Vmn+ vnF@) + Z 1 ST WV (r)S,(v)= ~PrC(1)P, (2.5)

Suppose the diffusion coefficients o,(x) of system (1.2) vanish outside the r-tube U, = {x:
AT(x) V(3(x))A(x)<r} for sufficiently small r. Then a T-periodic solution &(¢) of system (1.2) is
EOMS-stable in the set U, for some r;>r.

If a T-periodic solution £(t) of system (1.2) is EOMS-stable in some invariant neighbourhood U
and the integral E [§|A(x(s))|?ds is a sufficiently smooth function in U, then for any T-periodic
P.-positive definite matrix C(7) there exists a T-periodic P,-positive definite matrix V() satisfying
Eq. (2.5).

Proof of sufficiency. Suppose V(7) is a matrix satisfying the conditions of the theorem. There
exists some r,>0 for which the function 9(x) is defined in the domain U, . Then the function
v(x)+AT(x) V(3(x))A(x) is also defined in U, . From the lemma [putting 7= 9(x) in (2.4)] and
(2.5) there follows the relation

Lo(x)= —~AT()CEE)AE) + 82 (%, §(3(X))) (2.6)

In view of the Py,-positive definiteness of the matrices V(¥(x)) and C(9(x)) one can find
positive numbers m, M and « such that

miAE)P <o) S MIAX)P @7
al AP < ATE)CEE)AX) '

From (2.7) it follows that
—ATE)CEENAR) < —aM ™ v(x) (2.8)
The following inequalities are obtained from the lemma and (2.7)
182(x, OGN < Bl AX) P < Bom ™| A(x) | v(x) (2.9)
From (2.6}, (2.8) and (2.9) we obtain the inequality
Lox) < (Bam ™| AE) | —aM Hu(x)

which is valid for U, .
One can always find an ry <rg such that in U, C U, we have the inequality

BmAE) —eM™! < ~YKaM™!
from which it follows in turn that
Lv(x) < —%aMux) (2.10)

We will now assume that the diffusion coefficients of system (1.2) vanish outside U, for some
r<ry. In this case the domain U, , being invariant for the deterministic system (1.1) (which follows
from the fact that V is a Lyapunov function for the deterministic system), also remains invariant for
the stochastic system (1.2). From Ito’s formula we obtain

d
o [Evx())] = ELv(x(5)) 2.1

From (2.10) and (2.11) it follows that for any xo € U, the inequality

Ev(x (1)) < exp(—%aM ™ t)Ev(x,)
is satisfied.
Finally, using (2.7), we obtain

ElAx@O)P < Mm™exp (=% aM ™ 1E | A(x,) |2
The EOMS-stability is proved.
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Necessity. In view of the EOMS-stability of system (1.2) in U the function

() =E f AT (x (s)) C(9(x (s)))Ax (5))ds

is defined where x(7) is the solution of system {1.2) with initial condition x(0) = x. From the
P_-positive definiteness of the matrix C(7) it follows that the function v(x) satisfies the conditions of
the lemma, while the matrix V(7) = Y5[8%v[&(n)//ax;0x; 17 =, is P,-positive definite. Because

Fox () ~v@) =~ | ATGEICOGENAFE) ds
we have
djdt Eu(x (1)) = A7 (x)C(9(x))A(x (2.12)
On the other hand, from Ito’s formula and (2.4) it follows that
dldt Ev(x(0)) = ELv(x) = AT (OW(S()AMx) + 8,(x, £(9(x))) (2.13)
where
WE =V 0 ET OV VOFm + 2 STOVOSH0)

It follows from (2.12) and (2.13) that P, W(n) P, = — P.C(r)P.. Because P, W(r} P, = W(r).
equality (2.5) holds. The necessity is proved.

Theorem 2. Suppose that the matrix C(7), instead of satisfying the assumption of P.-positive
definiteness as in Theorem 1, satisfies the conditions
P

C(r) — () > 0 (2.14)
T .
fTa(nydr > 0 {2.15)
O

where a(r) is some T-periodic function. Then EOMS-stability holds.

Proof. In Theorem 1 the case a(r) = a>0 was considered. We now reduce the more general case
(2.15) to the one previously considered. For this it is sufficient to construct from the matrix V/(r) of
Theorem 2 a matrix Z (7) satisfying the equality

Z' 0+ FEmZr)+ Z(nF(r) + g ST(DZ(7)8u(1) = ~P,D(7)P, {2.16)
r=1

with a matrix D(7) such that for some p>0 the matrix D(7) — ul is P.-non-negative definite. We
shall construct the matrix Z{7) in the form Z(7) = p(r)}V(7), where p(7)>0 is a differentiable
T-periodic function. In view of Eq. (2.5) and the equality V{(7) = P, V(7) P, relation (2.16) will be
satisfied if one puts

D(r)=—p' (NV(1)+ p(1)C(7)

From (2.14) there follows the inequality

p
D(r) 3 —p@V(r)+ p(ra(r

Furthermore, it follows from (2.7} that

Py

P? R
D) = [-p'®+amMipn V(n) = ml-s'(n+tamM e {2.17)
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Suppose p(7) satisfies the differential equation
p'(r) — ()M p = —kp (2.18)

where k is some constant. The solution of this equation is the positive function
t
p(t)=exp [ (@(s)M™ - k)ds
0

From the T-periodicity requirement we obtain for k the equation

T
1=exp [ (a()M™ —k)ds
0

from which we find

1 7
k =—— [a(s)ds
i 420
From (2.17) and (2.18) we obtain the inequality
P P

D(r) > mkp(r)] > mk min p(r)]
[0,7]

i.e. for >0 one can take u = mkminy 7p(7). Theorem 2 is proved.

Previously [9] the problem of the stability of the rest point of a complex stochastic system with
several sources of noise was reduced to finding the value of some criterion computed for a simpler
system with a smaller number of noise sources (and in particular, for a deterministic system). The
possibilities of such an approach for investigations of EOMS-stability are demonstrated in the
following theorem.

Theorem 3. Suppose that a T-periodic solution &(7) of the deterministic system (1.1) is
exponentially orbitally stable, and the diffusion coefficients of system (1.2) vanish outside a
sufficiently small neighbourhood of U,, while inside U, they satisfy the inequality

m
Z 10:0)F < BEEDATOIEE)AE) (2.19)

r=

where u(7)=0is a T-periodic function, and I'(7) is a T-periodic P,-positive definite matrix. Suppose
V(7), a T-periodic P,-positive definite matrix, is a solution of the deterministic Lyapunov equation

V'(r)+ FT(5)V(r) + V(r)F () = P, T\(T)P, (2.20)
Then the inequality
1 7
— [ p@EtVE)ds <1 (2.21)
T o
is a sufficient condition for EOMS-stability of the solution &(7) of system (1.2) in U, forsome r >r.
Proof. Suppose v(x) = AT(x) V(9(x))A(x), where V() is a T-periodic P,-positive definite matrix
of the solution of the deterministic Lyapunov equation (2.20). (We note that in view of the

EO-stability, such a matrix always exists.) With condition (2.19) for the function R(x) = Lu(x)
there exists the majorant

82 u(x)
ax?

Furthermore, using, as in the lemma, the expansions for [dv(x)/dx, f(x)] and Y%8%u(x)/3x2, we
obtain

_ ov(x) T 1
R(x) = (? » f(x)) +u(BGNAT (IFEENAE) tr [ Py

R()= AT @) WE@)AX) + 5(x, £(9(%)))
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where B
W)=V (1) + FLV(n)+ V(D)F@E) + u(r)P, TP, tt V(r)
[8(x, §PEN) | < BlaE)P, B> 0

From the inequality R (x )< R (x) there follows the inequality

PT —
W(r) < W(r),

from which C(7) = —W(r) and C(r) = —W (1) we obtain
PT —_
C(ry = ().

Because C(7) = [1 — u(r)tr V(7)] P,T(r) P, , we have
P’T
C(m = (1 —u(r) tt V()P T (1) P,.

By the P.-positive definiteness of the matrix I'(7) one can find a positive number v such that
P
P, TP, > v

Thus, C(7) satisfies the inequality (2.14) in which a(r) = v[1 — u(7)tr V{(r}]. Here condition (2.15)
follows directly from (2.21). Hence by Theorem 2 the solution £(7) of system (1.2) is EOMS-stable
in a neighbourhood U, for some r;>r. The theorem is proved.

3, Consider the problem of stabilizing the periodic motion of a system with control
m
dx = (f(x)+BOX)Du)dt + Z o0p(x)dw,(r) (3.1
r=1
where B(7) is a T-periodic (n X k) matrix and u 1s the k-dimensional control.

Theorem 4. Suppose that the control is (3.1) is constructed in the form
u = K (3 (xNA(X) {3.2)
with a weighting matrix
K(r)=R™ (B (V(r)

where R(7) is a T-periodic positive definite matrix of dimensions £ X k and V(1) is a solution of the
matrix Riccati equation

V() + FL @)V r) + V(DF(T) - V@B(MR (BT (r)V(r) + (3.3)
+ T ST@VSn) = -P,CP,
r=1

Suppose V(1) and C{(r) satisfy the conditions of Theorem 1. Then, if the diffusion coefficients in
(3.1) vanish outside U, for sufficiently small r, the orbit y of system (3.1) with control (3.2} is
EOMS-stable.

The proof follows directly from Theorem 1.

It has been shown that in the deterministic case similar stabilizing controls were close to optimal
in the problem of minimizing some functional. It seems that here too the regulator (3.2), (3.3) is
close to optimal for the functional

J = E [ (AT6)COE)AE)+ 1l R(S(x))uldr
[1]
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4, In the following examples we take
w00 = AT GO0NAR)
where G(7), 0= r<Tis a T-periodic non-negative definite matrix. One can show that for this function
T
@G

2 T T
= - s {3
V{r) = G(r) TTHFD R )+ W{f RYPRSY ff

In particular, for G =1

Ve =1 — fofTm = p,

Tnrm

We give the formula for

m
way +FyeveE+s T STUS, for G=1

r=1

We have

1
W o= -1 (7 TF e FD v+ rO T -+ FH - 4.1
TEsfhy oo0om oot
----—--—-i;'—-——'°“ bl ESr {f"‘""T"}S?
iy r=1 r°r

One can show that

W(r)P, = W(r) 4.2)
In view of (4.2), one obtains for C in relation (2.5) the matrix C = ~W,

Example 1. We consider the Van der Pol equation with multiple noise sources, written in the form of the
system

Xy =X, X=X, Vexg {1 x4 olx,, x)w {4.3)

As we know, the asymptotically stable orbit x = &(r) for the deterministic Van der Pol equation for small
€>0 differs little from a circle of radius 2, and this is used in later calculations. Suppose

alxy, 2,) = ulx, — £ (3G (4.4}

where 1> 0 is some constant, so that the orbit investigated is a solution of system (4.3). The intensity of the
noise is governed by 4. We find a quantity uo such that for u<pug the orbit is EOMS-stable (and here, in
accordance with the results obtained, it is assumed that the noise is of the form (4.4) sufficiently near to the
orbit, and vanishes outside some tube surrounding the orbit).

Taking as C() the matrix ~ W{r) in accordance with (4.1}, we estimate (Cx, x) for a vector x orthogonal to
Ar) with norm |x| = 1. We obtain

(Cx, x) = 2e£3 (€] — 1) — Ya %} + 3 + O(s*) + Olep®)
If a(7) is put equal to the value of (Cx, x) obtained, the matrix C ()~ a(7)1 will be P,-non-negative definite
(more precisely, P.-null). Using the fact that & = 2cost+ O(e), & = —2sint+ O(e) and T=2nw + O(e), we
find

T
[ a@dr = dne — mu? + O(e*)+ O(eps®)
1]

Hence, if u*<4e, then for sufficiently small € the orbit of system (4.3) will be EOMS-stable, Therefore
Mo = 2\/;
Exampie 2. We again consider system (4.3), but now with a function o of the form
o%,, 2,) = B | A0y, %) = [0 — £ () + (%, - £ (D)1 (4.5)
near the orbit.
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The derivatives

BoE(ON/ox,,  Bo(E(9))/dx,

do not exist for this function.

However, the results of the preceding sections can, without any special difficuities, be carried over to system
(1.2), in which the coefficients of the noise have the form o,(x) = ¢,a,(p,). where ¢, is u vector,
pr = [(x = E(Hx )T, (Hx))(x — £(9(x)))]¥? is a scalar, T', is a non-negative definite matrix. and o, (p) is @
smooth scalar function for p=0, not equal to zero except that at zero «,(0) = 0. In this case all the results of
Sec. 2 remain as before with Eq. (2.5) replaced by the equation

nt
WAV AF VevEs X O (0] Vo)PyTyPr = —P,CP; (4.6
r=
In investigating the stability and stabilization of the points of rest similar noise sources (noise of the second
type) were considered [9].
For system (4.3), (4.5) m = 1, I' = [, the vector ¢ = (0, )}, '(0) = 1. Taking as v(x ) the same function as in
example 1, we again estimate (Cx, x ), using the equality C = — W (relation (4.2) being satistied here as well}.
where W is found from (4.6). We obtain

(Cx, X) = 2ek2 (381 — 1) - p?§3 + O(*) + O(en®)

Here for an appropriate a(7)

T
f a(r)dr = dne — 4np® + O(e?) + O(en?®)
0
and so
N
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